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Abstract 

A recently described probabilistic approach 
[Giacovazzo (1991). Acta Cryst. A47, 256-263; 
Altomare, Cascarano & Giacovazzo (1992). Acta 
Cryst. A48, 30-36] is aimed at integrating information 
contained in Patterson peaks with direct-methods 
procedures. The approach is here extended to the 
information contained in Harker sections. It is also 
shown that, when heavy atoms are present, the struc- 
ture seminvariants can be readily estimated by a com- 
bination of the so-called symmetry function with a 
special least-squares procedure. 

1. Symbols and abbreviations 

The papers by Giacovazzo (1991) and Altomare, 
Cascarano & Giacovazzo (1992) are here referred to 
as papers I and I I respectively. Symbols and abbrevi- 
ations coincide with those used in those papers: for 
the sake of brevity they are not listed here. The 
following additional symbols will be used in this 
paper: 
tp :number  of symmetry-independent atoms for 

which the location of at least one Harker peak is 
known; 

p = mtp ; 
tq = t -  tp : number of symmetry-independent atoms 

for which the location of Harker peaks is 
unknown; 

q = mtq; 
P 

~p ( h ) :  Y. f~(h); 
j=l 

f.Sq (h~, h2, h3) = m ~ ~(h~)fj(h2)fj(h3). 

¢ 

j :  It,+ ! 

The atoms are assumed to be in general positions. 
This simplifies the mathematical treatment but does 
not involve loss of generality. 

2. Introduction 

In paper I of this series, a theoretical approach was 
described aiming at exploiting, by the method of joint 
probability distribution functions of structure factors, 
the information provided by a Patterson map. In the 
absence of any Patterson information, the symmetry- 
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independent atomic positional vectors were con- 
sidered as random variables statistically independent 
of one another and uniformly distributed in the asym- 
metric unit. If an interatomic vector u = rj,-rj2 is a 
priori known, rj2 is no longer considered to be 
independent since it is completely determined in 
terms of rj, and n. Standard probabilistic methods for 
triplet-invariant estimates were therefore modified to 
take prior information into account. 

In paper II, the method was further developed to 
estimate triplets using the prior information on posi- 
tion and intensity of non-Harker peaks. The theory 
could not, however, be extended to Harker peaks: 
indeed in this case prior information about u =  
(C~, - C~2)r j does not relate different random variables 
but restricts the single variable re to a suitable domain 
(a point, line or plane). 

The main aim of this paper is to describe a prob- 
abilistic approach that is able to exploit information 
contained in Harker sections for estimating both trip- 
let invariants and one-phase seminvariants of first 
rank. For simplicity, we will suppose that the location 
and intensity of some Harker peaks are known, while 
no information is available about any other type of 
Patterson information (i.e. non-Harker peaks are 
assumed to be unknown). 

3. The average value of IFI 2 when one or more Harker 
peaks are a pr ior i  known 

Let 

uj(s,,  s) = ( C , , -  C~)rj (1) 

be the generic Harker vector generated by the atom 
in rj. By convention, 

u i ( s , , 1 ) = ( C , , - I ) r j = ( R , , - I ) r j + T , .  ,. (2) 

The complete set of Harker vectors generated by the 
atom in rj will then be written as 

uj(sl,  s), s, ,  s = 1 , . . . ,  m. (3) 

For convenience, we will often make the substitution 
C., = C,C,, (and therefore R~, = R~R, and T~, = R,T,  + 
T~) so that 

uj(sl,  s) = C,(C,, - l)r, 

= R, [ (R,  - I)ri + T , ]  = R,u;(n, 1). 
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Consequently, the complete set of Harker vectors 
generated by the atom in rj will also be written as 

R,.u/(n, 1), s, n = 1 , . . . ,  m. (4) 

In (4), the Harker peaks are ordered first according 
to the nth Harker section [all the peaks uj(n, 1) are 
on the same Harker section] and then according to 
the symmetry-equivalent sections. Obviously, if 
uj(n, 1) is known, then R~uj(n, 1), s =  1 , . . . ,  m are 
also known. However, ifuj(n~, 1) is known, that does 
not necessarily imply that uj(n2, 1) is known, unless 
they are symmetry equivalent. The average value of 
IF hi 2 when some symmetry-independent Harker vec- 
tors are a priori known will be denoted by <lFd=l{u}>. 

( a ) Non-centrosyrnmetric space groups 

In the absence of any information about non- 
Harker peaks, 

(If~121{u}) = ~h fj, (b)fj2(h) 
'~Jl,J2 = ! 

x ~. exp [2rrih(C,,rj,-C,rj2)]} 
51,,~ = l 

= ~  f ~ ( h )  
j l 

X ~ exp[2~h(C~, -C~) r j ] ) .  
S l , S = i  

This can be rearranged to emphasize the contribution 
from the Harker peaks: 

(IFhl2{u}> 
{ " } =eh ~N(h)+  Y.f~(h)E' cos[27rhR~uj(n, 1)] . 

j = l  n s = l  

(5) 

The primed summation over n runs over those Harker 
sections that contribute to the set {u}. 

( b ) Centrosymmetric space groups 

Here, 

{(' 
3 I 

x 2 cos (2~hC,  rj) cos (2rrhC,rj) 
S I , S = I  

{ '" 
= eh 2N (h)+ 2 f2(h) 

j = l  

x E' ~. cos [27rhR~uj(n, I)1 I .  (6) 
rl S = I  ) 

If tp = 0  then q = N and (5) and (6) reduce to the 
Wilson (1949) result. Information on Harker peaks 

may significantly change the expected values of the 
squared moduli provided ~ ,  (h)/Y~ N (h) is sufficiently 
large. 

4. The  condi t ional  d is tr ibut ion P(qDIRh, , Rh2, Rhs, {U}) 

If the set {u} is a priori known then 

(Fh, F.2F.~I{u}) 

= Q _~_ fj (h,)fj (h2)fj (h3) 

x ~ exp {27ri[h~(C,,-C~)rj 
S I , S 2 , S  = 1 

+ h2(C~-  C,,)rj]}) 

= Q~ fj (h,) fj (h2) fj (h3) 

x ~. exp {27r i [h lC, (C, - l ) r j  
t l ,  V,S = 1 

+ h2C.(C. - I)rj]}), (71 

where 

and 

h l + k l + l l = O ,  

C,, = C.~C, 

C~. = CsC,. 

Equation (7) may be written in the more useful form 

(Fh, Fh,F,,,l{u})=( ~ fj(h,)fj(h2)fj(h3) 
j = l  

x ~ exp {27ri[hiRsuj(n, I) 
t l ,  v , S  = 1 

+ h2R,uj(v, 1)]}>. (8) 

When n = v = 1 in (8), the Cochran contribution 

~3 (h,, h2, h3) (9) 

is obtained. The cases v = 1 (with n # 1), n = 1 (with 
v # 1) and n = v (with n # 1) provide the supplemen- 
tary contribution 

Ip 

E ~(h,)fj(h2)fj(h3) 
j = i  

x y '  ~ {cos [27rhlR~uj(n, 1)] 
n s = l  

+cos [2rrh2Rsuj(n, 1)] 

+cos [2rrh3R~uj(n, 1)]}. (10) 
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A further contribution could arise if we were able 
to recognize the cases in which two symmetry- 
independent Harker peaks are generated by the same 
jth atom. In this case, we should add supplementary 
terms like 

E' Y',' E cos 27r[hlR.~uj(n, 1) + h2R,uj(v, 1)]. 
n u j 

Such a situation is related to the use of the symmetry 
sum function (Simpson, Dobrott & Lipscomb, 1965; 
Zimmermann, 1988; Pavel6fk, 1989) and will not be 
considered here. In conclusion, 

(Fh,Fh2Fh3[{U})=~'. (hi, h2, h3) 
3 

tp 

+ E fj(h,)fj(hz)fj(h3) 
j = l  

x y '  ~ {cos [27rhlR~uj(n, 1)] 
n s = l  

+cos [2~h2R.~uj(n, 1)] 

+cos [2~rhaR~ui(n, 1)]}. 

In accordance with paper I [see equation (I.9)], 

p(O[Rh,, Rh2, Rh~, {U}) = [27rio(G)] -1 exp (G cos O) 

where 

G = 2( F. ,F.2F._d{u})  

x [(I Fh,l=l{u} )(I Fh2121 {u})(I F h 3 1 2 l { u } ) ]  - i/2 

In terms of normalized structure factors and by taking 
into account the intensity oLthe Harker peaks, we 
can write [see paper II and equation (If.17)] 

x eh, l+Z(2 l ' . . a , )  , (11) 
i = 1  u 

where 

Rh = F h X (I Fhl21u> -'/2, 

ai = ~ cos 2"rrhiR~u, 
5 ;=1  

I" = Iu/ (julo). 

It may therefore be concluded that triplet phases can 
be estimated via the concentration parameter (11) no 
matter whether prior information concerns Harker or 
non-Harker peaks. The usefulness of such informa- 
tion will depend on the existence of well localized 
and relatively large peaks. Thus structures with a few 
heavy atoms are the best candidates for the applica- 
tion of the theory, while equal-atom structures are 
out of its range, unless strong peak overlapping 
occurs. 

Since ordinary heavy-atom structures are routinely 
solved by traditional Patterson or direct methods, the 
above theory seems best suited to structures having 
pseudotranslational symmetry of non-ideal type, as 
described in paper II. 

5. The probabilistic estimation of the one-phase 
seminvariants of the first rank FH via Harker sections 
Let FH be a one-phase structure seminvariant of the 
first rank (Giacovazzo, 1977, 1978): its vectorial index 
satisfies the condition H = h(R, , -  I) for at least one 
rotation matrix R,. The value of ~¢u may be estimated 
in two ways: (a) by applying the theory developed 
in § 4 to the special triplets ( ~  relationships) Oj = 
q~n--~0h,+q~h,a,,; (b) by applying the algebraic 
relations between Harker sections and one-phase 
seminvariants of first rank described by Ardito, 
Cascarano, Giacovazzo & Lui6 (1985) and by 
Cascarano, Giacovazzo, Lui6, Pifferi & Spagna 
(1987). In particular, it was shown that FH is strictly 
related to the Fourier transform of the Harker section 
HS, generated by the symmetry operator C, ,  

FH = exp (-2~rihT,)~[ HS, ]. (12) 

Method (a) requires extended supplementary proba- 
bilistic considerations which will not be given here. 
We will focus our attention on (b) to provide the 
probabilistic background to that method. 

Let some Harker vectors corresponding to tp atoms 
be a priori known. Then 

tp 

FH = ~ fj(H) ~ exp[27rih(R~-I)C~rj] 
j = l  s = l  

+ L fj(H) ~ exp(2rriHC,.rj) 
j =  tv+ 1 s =  1 

tp 

: e x p  (-2rr ihT.)  E fj(H) 
j =  I 

x ~ exp{2~ih[Uj(n,s)]} 
,,'= | 

+ L f j ( H ) ~  exp(27riHC~rj) 
j = t p + l  s = l  

: e x p  ( -27r ihT. )Fp .  + Fqn, (13) 

where Uj(n, s) = (C, - l )C~rj  is the Harker vector in 
the section HS,, generated by the atom C~rj. It is 
worthwhile emphasizing that the vectors Uj(n, s), s = 
1 , . . . ,  m, all lie in HS, (~hey are the projections on 
HS,, of the vectors C~rj). Thus the usual structure- 
factor algebra cannot be used for estimating F~,H 
[Uj(n, 1) is not necessarily symmetry-equivalent to 
Uj(n,s)]  except when C, commutes with all C.~ 
operators. In this last case (see Appendix), 

tp 

FpH = E ~ ( H ) ~  exp [27rihC,Uj(n, 1)]. 
j = l  s = l  
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From now on, and in accordance with the above 
observations, Fpn represents the contribution from 
the tp atoms generated by those symmetry operators 
for which Uj(n, s) are actually known, while Fqn is 
the difference FH-exp(-27rihT,)FpH. Under the 
above hypotheses, the characteristic function of Fn is 

C(vi, vz) = (exp [i(vlAn+ t~2Brl)])  

= (exp {i[ v,(Apn + Aqn) + v2( Bpn + Bqn)]}) 

= exp [ i(v~apH + V2BpH)] 

X (exp [ i( v, Aqn + v2Bqn)]), 

where v~ and v2 are two carrying variables; Apn and 
A, m are the real parts of Fpn exp (-27rihT,)  and of 
Fqn respectively; Bpn and Bqn are the corresponding 
imaginary parts. In accordance with Giacovazzo 
(1983) we obtain 

P(An, BHIApH, Bpn) 
1 ( 

- zr Y'-,i (H) exp 

or, in polar form, 

( A n -  Apn) 2 (BH Z BpH)z'~ 

Eq (H) Eq (H) J 

P(IFHI, ~o.I F~., ~%.) 

FH exp / 1 - ~ r E . .  - E--~ [IF"I~+IF~"I2 

- 21FH F . 8 I  c o s  (~t:) H - -  ~ 0 p H  "~- 2 TrhT. ) ] }, 

where Y'q (H) is the average scattering value corre- 
sponding to the q atoms. Then, in terms of pseudo- 
normalized structure factors E ' =  F/~q/2, 

P(q~a[ I E~,,I, ~,H) 
-~ [27r10(G)]-' 

x exp {G cos [q~n- (q~pn- 27rhT,)]}, (14) 

G= Z[EhE'pH[. (15) 

Equation (14) is a v o n  Mises distribution and ¢pH-- 
27rhT, is the expected value of q~n. Equation (14) 
agrees with the formula intuitively suggested by 
Cascarano, Giacovazzo, Lui6, Pifferi & Spagna 
(1987). 

6. A modified procedure 

In the paper by Cascarano, Giacovazzo, Lui6, 
Pifferi & Spagna (1987), the following practical pro- 
cedure was proposed for the estimation of the one- 
phase structure seminvariants of the first rank 

H = h ( I - R . ) .  (16) 

(i) The Harker section HS, is calculated and a 
suitable list of symmetry-independent vectors Uj are 
obtained by application of a peak-search routine. 

(ii) The atomic pseudo-positions r~ are calculated 
by solving the equation 

r~ = D*(Uj + T,)  + ( I -  D 'Dr)v ,  

where v is a free vector, D , = ( I - R , ) ,  D* is the 
reflexive generalized inverse of D..  r~ cannot be con- 
sidered to be the true positional vector of the j th  atom 
but only a representative of the subset of the posi- 
tional atomic vectors compatible with Uj. 

(iii) the function 

Fh = ~. wjf ~, exp (27riHCsr~) (17) 
j s 

is calculated, where H satisfies (16) via the same 
operator C, used for the choice of the Harker section, 
f is the scattering factor of the heaviest atomic species 
and wj is an occupancy factor, the role of which is 
described below. 

(iv) A special least-squares procedure is applied 
that minimizes 

= E (I F,,Iohs- IFhl)' 
by optimizing, for each atom, w, r' and the isotropic 
thermal parameter B. It is assumed that wj= 
(lj/Imax) I/2, w h e r e  Ij is the intensity of the j th  peak 
and /max is the maximum intensity on the Harker 
section. Small residual values 

Res= E IFalo~.~--IFhl /IFslo~ 

at the end of the procedure denote high proficiency 
of the process. 

(v) The reliability of each structure seminvariant 
is calculated on the basis of the concentration param- 
eter (15). 

The above method has been successfully applied 
to crystal structures with few dominant heavy atoms 
and to structures with medium-weight atoms (S, Cl, 
Fe etc.). 

A more efficient procedure (see also some sugges- 
tions by Pavel~ik, 1990) can be introduced according 
to the scheme below. 

(a) The steps (i) and (ii) of the old procedure are 
replaced by the calculation of the symmetry minimum 
function (Simpson, Dobrott & Lipscomb, 1965; 
Zimmermann, 1988; Pavel~ik, 1988, 1990) 

[ " '  1 )],/2 
Q(r) -- min - -  P ( r -  C . r  , 

n = l  Pn 
where P is the Patterson function and p, is the multi- 
plicity of the symmetry interaction. Q is a combina- 
tion of all the information contained in the Harker 
sections (including inversion and improper rotation 
peaks, which were not taken into account in the old 
procedure). The maxima of Q should provide the 
possible atomic positions which satisfy the Harker 
'sections'. 

(b) The special least-squares process described in 
step (iv) of the procedure is applied to the largest 
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peaks to recognize spurious atoms and is followed 
by Fourier syntheses to introduce new atomic 

positions. Structure Space 
The pseudo-structure so obtained may be used for code group  

the more accurate estimation of the structure RH5 P4/n 
seminvariants (to be used in direct-methods FREIES P2~/a 
approaches) or for a safer application of the image- cuPP P2t/n 

AGI P2t/ c 
seeking functions to elucidate the correct crystal TRICE P2t2~2 t 
s t r u c t u r e .  BAVO P2t 2t 21 

7. Applications 

In Table 1, the main data for six crystal structures 
are given. In Table 2, for each structure, the following 
data are shown: the atomic species that are considered 
heavy, the number of reflections with largest value of 
]El chosen by SIR88 (Burla, Camalli, Cascarano, 
Giacovazzo, Polidori, Spagna & Viterbo, 1989) as 
active in the phasing process, the number of one- 
phase structure seminvariants of the first rank 
included in them and the corresponding number of 
one-phase structure seminvariants of second rank. 

At the end of the procedure, the Res values given 
in Table 3 are obtained. All of them are sufficiently 
small, denoting high proficiency of the method, 
except for TRICE where Res = 0.46. Accordingly, all 
the SSI(1) included in the NRIF reflections for RH5, 
FREIES, CUPP, AGI and BAVO were correctly esti- 
mated, while four errors were made for TRICE (see 
error in Table 3). 

A more complete grasp of the efficiency of the 
procedure can be obtained by considering in Table 
3 the number of errors relative to all the one-phase 
seminvariants included in the overall set of measured 
reflections. Again, the results are quite satisfactory, 
except for TRICE where the large Res value hinders 
reliable estimates. 

The method also allows the estimation in P212~2~ 
of the non-centrosymmetric one-phase structure 
seminvariants of second rank, provided the residual 
Res is sufficiently small. Since the probabilistic for- 
mula (14) is of von Mises type, reliable probabilistic 
estimates can be obtained for phases marked by large 
values of G [as given by (15)]. In Table 4, the list of 
SS1(2) seminvariants for BAVO is given, together 
with their true and estimated phases. 

Tests made on several equal-atom structures were 
in general not successful. The main reason is the 
unsatisfactory quality of their Patterson maps: false 
or misplaced peaks were present in too high percen- 
tage among the subset of the largest intensity peaks 
lying in the Harker section. Several methods for 
improving the location of peaks and for excluding 
false ones were tested but none proved successful. 
When this problem is solved, the procedure described 
here should have a greater impact on the phasing 
process. 

Table 1. Code name, space group, crystallochemical 
data and references for test structures 

Molecular 
formula Z Reference 

Rh2AgP6C83 H840 3 F3S 4 ( I ) 
PbAgSbS3 4 (2) 

Cu2Br2PaCssH68 4 (3) 
Ag212PaC64H56 4 (4) 
C24HI6CI3N30 3 4 (5) 

Ba(VO3)H20 4 (6) 

References: (1) Bachechi, Ot t& Venanzi (1986); (2) Ito & Novacki (1974); 
(3) Camalli, Caruso & Venanzi (1986); (4) Camalli, Caruso & Venanzi 
(1985); (5) Kobelt, Paulus & Kunstmann (197,1); (6) Ulick:i, Pavel~:ik & 
Hulm (1987). 

Table 2. Test-structure data 

For  each  test s t ructure ,  the fo l l owing  da t a  are  s h o w n :  the c o d e  
n a m e ;  the  a t o m i c  species  (Sp) tha t  are  c o n s i d e r e d  heavy ;  the  
number (NRIF) of reflections with largest IE] chosen by SIR88 as 
active in the process; the number of one-phase structure 
seminvariants of the first rank [SSI(1)] included in NRIF; the 
corresponding number of one-phase structure seminvariants of 
s e c o n d  rank  [SS1(2)] .  

C o d e  Sp N R I F  SSI (1 )  SS l (2 )  

RH5 Rh, Ag 249 92 - 
FREIES Pb, Ag, Sb 175 48 - 
CUPP Cu, Br 499 86 - 
AGI Ag, I 468 60 - 
TRICE CI 196 22 19 
BAVO Ba, V 144 28 6 

8. Concluding remarks 

The integration of Patterson information into direct- 
methods procedures has been extended to include 
the information contained in the Harker sections. It 
has been shown that the same formalism introduced 
in papers I and II for taking into account information 
provided by non-Harker peaks is also valid for Harker 
peaks. A combination of the symmetry function with 
direct methods has also been suggested, which proved 
able to estimate reliably one-phase structure 
seminvariants when some heavy atoms are present. 

Thanks are due to Professor G. D. Andreetti, Dr 
C. Rizzoli and Dr F. Pavel~:ik who allowed us to use 
the PC version of the program XFPS originally writ- 
ten by Dr F. Pavel~ik. 

APPENDIX 

In (13), F~,H can be approximated as 
tp 

F'pu~-( f (H)/ f (h))  ~., f~(h) ~ exp[2rrihUj(n,s)],  
j = l  s = l  

(A.1) 

where ( f ( H ) / f ( h ) ) = ( f ° ( H ) / f ° ( h ) ) e x p [ - B ( s ~  - 
s~)] is an average value that can be estimated as soon 
as the overall thermal factor is available from a Wilson 
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T a b l e  3. Test-structure results 

For each structure we give: the value of the final residual Res; the number of wrong estimates (error) for the one-phase seminvariants 
of first rank [SSl( l)]  included in the NRIF reflections; the number of errors (Errortot) for one-phase seminvariants of first rank [SSl(1)tot 
is their number: if SS1 (l)tot > 1000, the calculations are limited to the first 1000] included in the N RIFto t measured reflections. 

Res SS1 ( 1 ) Error N RI Fro t SS1 ( 1 )to, Errortot 
RH5 0.25 92 0 1420 441 13 
FREI ES 0.26 48 0 972 148 44 
C U PP 0.27 86 0 7455 1000 47 
AGI 0.27 60 0 11463 1000 45 
TRICL 0.46 22 4 2425 196 51 
BAVO 0.07 28 0 620 57 1 

Table 4. Results for  BA VO 

For each one-phase seminvariant of  the second rank for BAVO 
the IE[ values, the true and the estimated phases and the G values 
are given. 

h k l [El ~ .... q~a~c G 

2 6 2 1.8 192 171 2.95 
2 2 4 1.41 6 9 1.92 
8 2 2 1.30 179 181 1.84 
2 4 4 1.29 6 -19 1.71 
8 4 4 1.25 333 18 1.45 
4 6 2 1.23 357 8 1.38 

scaling procedure (s = sin 0/A). Thus, any reflection 
h satisfying h(l-R,,)= H and the Harker vectors Uj 
can be used directly for calculating Fpu and then for 
estimating FH. 

If C,, commutes with all C~ operators then (R , , -  
I ) C ~ r / = C ~ ( R , - I ) r j = C ~ U j ( n ,  1) a n d  t h e  u s u a l  
a l g e b r a  o f  t h e  s t r u c t u r e  f a c t o r s  c a n  b e  u s e d .  T h u s  

(A.  1 ) r e d u c e s  to  

! 
FpH ~-- ( f (H) / f (h) )F 'ph,  ( A.2) 

! 
where Fph is a structure factor of index h in which 
the atomic positions are replaced by the interatomic 
v e c t o r s  Uj .  
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Abstract  

For a lattice in two dimensions, the number of distinct 
derivative lattices of index n is given by the arithmetic 
function ol (n)  which is the sum of the divisors of n, 
i n c l u d i n g  1 a n d  n. T h e  f u n c t i o n  o ' l ( n )  h a s  as  its 

g e n e r a t i n g  f u n c t i o n  t h e  D i r i c h l e t  s e r i e s  i ( s ) i ( s -  1) 

where if(s)~-~.~=1 n "~; is the Riemann zeta function. 
That is, i ( s ) i ( s  - 1) = ~ = l  crl( n)n -~. The probability 
that s points chosen at random on the two- 
dimensional lattice do not lie on any of the derivative 
lattices so enumerated is therefore [ i f ( s ) i f ( s -1) ]  -1 
The equivalent results in three dimensions are: the 
arithmetic function ~dl. [n/d]2Crl(d),  where the sum 
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